Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct.

نویسندگان

  • Mihaela Necula
  • Rakez Kayed
  • Saskia Milton
  • Charles G Glabe
چکیده

Alzheimer disease is characterized by the abnormal aggregation of amyloid beta peptide into extracellular fibrillar deposits known as amyloid plaques. Soluble oligomers have been observed at early time points preceding fibril formation, and these oligomers have been implicated as the primary pathological species rather than the mature fibrils. A significant issue that remains to be resolved is whether amyloid oligomers are an obligate intermediate on the pathway to fibril formation or represent an alternate assembly pathway that may or may not lead to fiber formation. To determine whether amyloid beta oligomers are obligate intermediates in the fibrillization pathway, we characterized the mechanism of action of amyloid beta aggregation inhibitors in terms of oligomer and fibril formation. Based on their effects, the small molecules segregated into three distinct classes: compounds that inhibit oligomerization but not fibrillization, compounds that inhibit fibrillization but not oligomerization, and compounds that inhibit both. Several compounds selectively inhibited oligomerization at substoichiometric concentrations relative to amyloid beta monomer, with some active in the low nanomolar range. These results indicate that oligomers are not an obligate intermediate in the fibril formation pathway. In addition, these data suggest that small molecule inhibitors are useful for clarifying the mechanisms underlying protein aggregation and may represent potential therapeutic agents that target fundamental disease mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics and Molecular Docking Studies on the Interaction between Four Tetrahydroxy Derivatives of Polyphenyls and Beta Amyloid

Interactions of 3,3',4,4'-tetrahydroxybiphenyl (BPT) and three isomeric 3,3",4,4"-tetrahydroxyterphenyls (OTT, MTT, PTT) with Alzheimer’s amyloid-β peptide (Aβ) were studied by molecular dynamics simulation and molecular docking. Structural parameters such as Root-mean-square derivations (RMSD), radial distribution function (RDF), helix percentage and other physical parameters were obtained. Th...

متن کامل

New class of inhibitors of amyloid-beta fibril formation. Implications for the mechanism of pathogenesis in Alzheimer's disease.

The amyloid hypothesis suggests that the process of amyloid-beta protein (Abeta) fibrillogenesis is responsible for triggering a cascade of physiological events that contribute directly to the initiation and progression of Alzheimer's disease. Consequently, preventing this process might provide a viable therapeutic strategy for slowing and/or preventing the progression of this devastating disea...

متن کامل

Designed Glycopeptidomimetics Disrupt Protein-Protein Interactions Mediating Amyloid β-Peptide Aggregation and Restore Neuroblastoma Cell Viability.

How anti-Alzheimer's drug candidates that reduce amyloid 1-42 peptide fibrillization interact with the most neurotoxic species is far from being understood. We report herein the capacity of sugar-based peptidomimetics to inhibit both Aβ1-42 early oligomerization and fibrillization. A wide range of bio- and physicochemical techniques, such as a new capillary electrophoresis method, nuclear magne...

متن کامل

Hsp104 targets multiple intermediates on the amyloid pathway and suppresses the seeding capacity of Abeta fibrils and protofibrils.

The heat shock protein Hsp104 has been reported to possess the ability to modulate protein aggregation and toxicity and to "catalyze" the disaggregation and recovery of protein aggregates, including amyloid fibrils, in yeast, Escherichia coli, mammalian cell cultures, and animal models of Huntington's disease and Parkinson's disease. To provide mechanistic insight into the molecular mechanisms ...

متن کامل

The recent development in synthesis and pharmacological evaluation of small molecule to treat Alzheimer's diseases: A review

Alzheimer's disease is a neurological disorder in which the death of brain cells causes memory loss and cognitive decline. A neurodegenerative type of dementia, the disease starts mild and gets progressively worse. Like all types of dementia, Alzheimer's is caused by brain cell death. The most common presentation marking Alzheimer's dementia is where symptoms of memory loss are the most promine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 14  شماره 

صفحات  -

تاریخ انتشار 2007